文章编号:1674-098X(2012)04(b)-0069-01

橡胶的老化现象及防老化措施

(哈曼汽车电子系统(苏州)有限公司 215004)

要:橡胶与橡胶制品,在使用以及贮存时,受到氧、臭氧、光、热、水分、机械应力等方面的影响,容易出现老化的现象,失去其应有 的价值或作用,因此,有必要采取有效的措施,防止或者延缓橡胶的老化,使橡胶能够充分地发挥其内在价值,给人们提供更多的方便。本 文主要研究橡胶的老化现象及橡胶的防老化措施。

关键词:橡胶 老化现象 防老化 措施

中图分类号:TQ33

文献标识码:A

内部结构的破坏,致使橡胶出现老化的现

橡胶老化是日常生活中常见的一种现 象,橡胶与橡胶制品,在使用以及贮存时, 受到臭氧、氧、光、热、水分、机械应力等方 面的影响,因此容易出现老化的现象。臭 氧、氧、光、热、水分、机械应力等都是致使 橡胶发生老化的重要因素。橡胶老化会使 橡胶失去其应有的价值或作用.采取有效 的措施防止或者延缓橡胶的老化是橡胶企 业的当务之急。

1 引发橡胶老化的重要因素

11 氨

氧是致使橡胶出现老化现象的重要因 素之一,氧可以与橡胶中的橡胶分子发生 游离基链锁反应,致使分子链出现过度交 联或者断裂的现象,导致橡胶中重要的性 能发生变化,因此容易出现橡胶老化的现 象[1]。

1.2 臭氧

与氧相比,臭氧的化学活性比较高,因 此其对橡胶的破坏力也比氧大得多。与氧 相同,臭氧也可以与橡胶中的橡胶分子发 生游离基链锁反应,致使分子链出现过度 交联或者断裂的现象,导致橡胶中重要的 性能发生变化,引发橡胶的老化现象,但与 氧不同的是臭氧对橡胶的作用是不稳定 的,它可以依据橡胶的变形与否而相应的 出现变化[2]。比如,当臭氧作用于不饱和橡 胶时,会产生与应力作用方向相同的裂纹, 称为"臭氧龟裂":当臭氧作用于变形橡胶 时,仅仅产生表面生成氧化膜,而不出现龟 裂现象。

13米

紫外线是引发橡胶老化的主要光波, 其光波较短,且能释放出巨大的能量。紫外 线不仅可以使橡胶发生分子链的交联或者 断裂,而且还可以致使橡胶出现游离基,导 致橡胶出现氧化链反应,橡胶逐渐出现老 化现象。

1.4 热

当温度增高时,橡胶很容易出现热交 联或者热裂解的现象。活化作用是热对橡 胶的主要作用.当温度增高到一定的极限 时,氧扩散速度有所提高,致使出现活化氧 化反应.因此提高橡胶氧化反应的速度.最 终引发橡胶的老化现象,即热氧老化图。 1.5 水分

当橡胶遭受雨水的侵蚀时,橡胶中的 亲水基团与水溶性物质等成分被水抽提溶 解,橡胶内部结构遭受破坏。尤其在大气曝 露以及雨水浸泡的交替作用下,加速橡胶

1.6 机械应力

象。

机械应力对橡胶可以反复地发生作 用,致使橡胶分子发生链断裂,因此产生游 离基,导致氧化链反应的发生,出现力化学 过程.引发橡胶出现老化现象。

1.7 其他

除了以上几种因素外,致使橡胶出现 老化现象的因素还有生物、变价金属离子、 化学介质、电以及高能辐射等等。

2 橡胶的防老化措施

2.1 添加防老化剂

自由基反应是致使橡胶老化的主要原 因,依据这个原因,我们可以采取添加防老 剂等措施来防止橡胶的老化。橡胶的防老 剂主要有自由基抑制剂、光稳定剂、抗臭氧 剂、有害金属抑制剂、过氧化物分解剂等防 老剂[4]。防老剂防老的原理主要是以防止橡 胶发生自由基反应,并停止橡胶自由基链 锁反应,防老化剂可以产生过氧化物,并分 解成稳定的化合物,使橡胶的内部结构处 于稳定的状态,抑制橡胶出现老化的现象。 防老剂的作用或者性能主要决定于它的结 构,不同的置换基,其可以产生不同的效 果。防老化剂按种类来分,可以分为酚类、 硫脲类、胺类以及二硫代氨基甲酸镍类等。 不同种类的防老化剂,存在着不同的性能, 其耐臭氧性、耐热性、抗有害金属老化性以 及耐屈挠龟裂性会有所不同,因此可以依 据不同的性能来选择防老剂的种类。此外, 防老剂还具备加和性的特点,因此,在实际 应用中,我们可以选择几种不同性能的防 老剂,实施合并使用,达到橡胶防老化的目 的。

2.2 添加其他物

防止橡胶的老化,除了添加防老剂外, 还可以添加其它一些具有防老化作用的物 质,比如,在天然橡胶中,添加铝粉。天然橡 胶在添加铝粉后,其在出现热老化后,依然 可以保持良好的机械性能,而且天然橡胶 在添加铝粉后,其对微波照射、臭氧以及热 等外界干扰起到比较强的抵抗作用,天然 橡胶因此具备较强的抗老化性。在氯丁二 烯橡胶中添加乙烯硫脲(ETU)也可以起到 很好的防老化效果,添加的乙烯硫脲越多, 氯丁二烯橡胶的抗老化性能会越强。

2.3 纳米粒子

随着科学技术的不断发展,纳米技术 得到迅速地发展,在橡胶防老化方面,纳米

技术起到非常重要的作用。作为一种分散 相,纳米粒子可以产生较强界面、较大比表 面积以及尺度效应的相互作用,并且可以 以吸附或者化学键等组分间实施协同作 用,对橡胶材料起到分散的作用,将橡胶材 料合成纳米复合橡胶材料,与普通橡胶相 比.纳米复合橡胶材料具备许多新的优异 性能,大大地提高橡胶材料的性能,增强橡 胶材料的抗老化性能[5]。

2.4 对橡胶表面进行处理

对橡胶表面进行处理是防止橡胶老化 的重要手段,比如,可以选择TiO2薄膜覆盖 在天然橡胶的表面上,由于TiO2薄膜可以 提高天然橡胶的抗老化性能,因此可以有 效地防止或者延缓天然橡胶的老化。此外, 在橡胶的表面实施等离子氧处理,可以有 效地改变橡胶表面的拒水性,增强橡胶的 抗老化功能,起到防止或者延缓天然橡胶 老化的作用。

3 结语

随着社会经济的不断发展,我国的橡 胶工业迅速发展,橡胶在社会的各个领域 得以广泛地应用,如电子电气、汽车、建筑 以及航空航天等领域都留有橡胶的足迹。 橡胶与橡胶制品,在使用以及贮存时,受到 氧、臭氧、光、热、水分、机械应力等方面的 影响,容易出现老化的现象,失去其应有的 价值或作用,因此,有必要采取有效的措 施,防止或者延缓橡胶的老化,使橡胶能够 充分地发挥其内在价值,给人们提供更多 的方便。

参考文献

- [1] 王思静,熊金平,左禹.橡胶老化机理与 研究方法进展[J].合成材料老化与应 用,2009(2).
- [2] 李昂.橡胶的老化与寿命估算(续) 第九 章 橡胶的老化试验及老化变质程度的 测定[J].橡胶参考资料,2009(4).
- [3] 李昂.橡胶的老化现象及其老化机理 [J].特种橡胶制品,2009(5).
- [4] 李昂.橡胶的老化与寿命估算(续)第十 章 橡胶贮存期或性能变化的预测[J]. 橡胶参考资料,2009(4).
- [5] 李昂.第二章 橡胶结构与老化的关系 [J].橡胶参考资料,2009(3).

论文降重、修改、代写请加微信(还有海量Kindle电子书哦)

免费论文查重,传递门 >> http://free.paperyy.com

阅读此文的还阅读了:

- 1. 橡胶坝防老化涂料
- 2. 果品玉米防老化措施
- 3. 橡胶材料的防老化措施
- 4. 浅谈橡胶坝袋的防老化
- 5. 北戴河橡胶坝的运用管理和防老化措施
- 6. 橡胶水坝老化与防老化试验研究
- 7. 橡胶的老化现象及防老化措施
- 8. 第八章 橡胶在加工中的防老化措施
- 9. 橡胶防老化涂层
- 10. 橡胶坝的检修和防老化